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Abstract: A novel route to substituted tetrahydrofurans is described, which is based on 
the Lewis acid-promoted Prins cyclization with side chain formation of C-C bond. 
Bishomoallylic silyl ethers, rather than the (chloro)benzyl ethers and esters, provide 
selectively tetrahydrofurans, indicating the siloxy effect for facilitating the cycllzation. 

A substituted oxygen heterocycle possessing side chain chirality is a characteristic feature of 

polyether antibiotics (Figure l), and methods for assembling these structural units in 

stereocontrolled fashion have been developed in recent years.’ During the course of our research 

project to develop the carbonyl-ene reaction2 as an efficient method for acyclic stereocontrol, we 

made unanticipated observations: a substituted tetrahydrofuran was obtained. in the attempted 

glyoxylate-ene reaction of bishomoallylic sllyl ether, presumably via the Prins reactions to form C-C 

bond4 followed by internal attack of the siloxy group into the cationic intermediates (Scheme 1). 

Herein reported is the Lewis acid-promoted Prins cyclization as a stereocontrolled route to 

tetrahydrofuran units of polyether antibiotics. 
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Figure 1 

First, the reaction of dimethylthexylsilyl (E)-4-hexen-1-yl ether (la) with methyl glyoxylate 

was found to give stereoselectively (>91%) the substituted tetrahydrofuran (2)s in 49% isolated 



6316 

yield along with the glyoxylate-ene product 2a (42% yield) in the presence of SnCLj (1 equivalent) 

at -78 oC in CH2Cl2 (Scheme 2). After screening the alcohol-protecting groups, the less bulky but 

relatively stable dimethyl-iso-propylsilyl group was found to be the best choice. The l’,P’-anti- 

configuration of 2 was deduced by the similarity in the 1 H NMR coupling constant of hydroxy 

rnethine proton (J I 3.9 Hz) to that of the corresponding anb;ene product 3a (J = 3.6 Hz).7 2,1’-syrr 

Selectivity was then determined through further transformation to the known syncompound (4).s 

Thus, the internal siloxy group attacks an intermediate (A: R t H) in an anti-fashion. A similar 

reaction with dichloromethyl methyl ether, which underwent vfnylsilane-substitution reactions,9 

gave only a trace amount of the cyclized aldehyde. 
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Next; the reaction of silyl ether 5c with glyoxylate was examined, wherein the problem of the 

1,3-remote asymmetric induction arose (eq 1). P,Ccis-Product 6 was obtained as determined by 

t2C NMR spectral analysis .I0 2.4~c&Stereochemistry of 6 could be reasonably explained again 

by the figure A with the methyl group (R = Me) at the equatorial position. Interestingly, a similar 

reaction with 2,bdichlorobenryl ether Se, which provided tetrahydrofuran in the iodocyclizaticn 

reaction,” gave the ene product along with the lactcne cyclized thereof, rather than the Prins 

cyclization product. 
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Furthermore, the 1,2-asymmetric induction was examined using siiyi ether 7c (eq 2). 2,3-c&- 

Stereochemistry of the cyctiied product 8 was ascertained by 13C NMR spectral anafysis.10 By 

contrast, a similar reaction with ester 9, which was successfuity employed in the todotactoniration 

reaction,lz gave the ene productpredominantty. Thus, these results clearly indtcate the remarkable 

siioxy effect13 for facilitating the Prins cyciization. 
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Finally, we found the high level (~95%) of 1 ,Sremote internal asymmetric induction14 in the 

reaction with simple siiyi ether 1Oc to give 11 in 60% isolated yield’s (eq 3). 2,2’-anti- 

Stereoselectivity could be deduced on the basis of the high 2,1’-syn- and l’,P’-anti-seiectivities 

which were found with (4E)-hexenyi ether (lc) (Scheme 2). 
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